

UNIVERSITY OF MYSORE

Ph.D. Entrance Examination, October - 2017

SUBJECT CODE : 4 4

Entrance Reg. No.

QUESTION BOOKLET NO

03591

QUESTION BOOKLET

(Read carefully the instructions given in the Question Booklet)

SUBJECT:

CHEMISTRY

MAXIMUM MARKS: 100

MAXIMUM TIME: THREE HOURS

(Including initial 10 minutes for filling O.M.R. Answer sheet)

INSTRUCTIONS TO THE CANDIDATES

- 1. The sealed questions booklet containing 50 questions enclosed with O.M.R. Answer Sheet is given to you.
- 2. Verify whether the given question booklet is of the same subject which you have opted for examination.
- 3. Open the question paper seal carefully and take out the enclosed O.M.R. Answer Sheet outside the question booklet and fill up the general information in the O.M.R. Answer sheet. If you fail to fill up the details in the form of alphabet and signs as instructed, you will be personally responsible for consequences arising during scoring of your Answer Sheet.
- 4. During the examination:
 - a) Read each question carefully.
 - b) Determine the Most appropriate/correct answer from the four available choices given under each question.
 - c) Completely darken the relevant circle against the Question in the O.M.R. Answer Sheet. For example, in the question paper if "C" is correct answer for Question No.8, then darken against SI. No.8 of O.M.R. Answer Sheet using Blue/Black Ball Point Pen as follows:
 - Question No. 8. (A) (B) (Only example) (Use Ball Pen only)
- 5. Rough work should be done only on the blank space provided in the Question Booklet. Rough work should not be done on the O.M.R. Answer Sheet.
- 6. If more than one circle is darkened for a given question, such answer is treated as wrong and no mark will be given. See the example in the O.M.R. Sheet.
- 7. The candidate and the Room Supervisor should sign in the O.M.R. Sheet at the specified place.
- 8. Candidate should return the original O.M.R. Answer Sheet and the university copy to the Room Supervisor after the examination.
- 9. Candidate can carry the question booklet and the candidate copy of the O.M.R. Sheet.
- 10. The calculator, pager and mobile phone are not allowed inside the examination hall.
- 11. If a candidate is found committing malpractice, such a candidate shall not be considered for admission to the course and action against such candidate will be taken as per rules.

INSTRUCTIONS TO FILL UP THE O.M.R. SHEET

- 1. There is only one most appropriate/correct answer for each question.
- 2. For each question, only one circle must be darkened with BLUE or BLACK ball point pen only. Do not try to alter it.
- 3. Circle should be darkened completely so that the alphabet inside it is not visible.
- 4. Do not make any stray marks on O.M.R. Sheet.

ಗಮನಿಸಿ : ಸೂಚನೆಗಳ ಕನ್ನಡ ಆವೃತ್ತಿಯು ಈ ಮಸ್ತಕದ ಹಿಂಭಾಗದಲ್ಲಿ ಮುದ್ರಿಸಲ್ಪಟ್ಟಿದೆ.

Note: Answer all the questions

Part - A

 $[50 \times 1 = 50]$

1)	Errors that occurs due to equally affected measurements is called				
	(A)	Random errors	(B)	Systematic errors	
	(C)	Frequent error	(D)	Precision	
2)	In potentiometry which of the following considered as standard electrons				
	(A)	Calcium	(B)	Hydrogen	
	(C)	Potassium	(D)	Copper	
3)	Which form of electrochemical measurement does not involve electrolys				
(B) Electrogravimetry					
	(C)	Coulometry			
	(D)	Voltammetry			
4)	Which of the following statements concerning the apparatus routinely us for titration is INCORRECT?(A) Pipette is used to transfer a fixed amount of a solution accurately				
	(B) Measuring cylinder is used to deliver variable volumes of a solut				
	accurately.				
	(C) I	Electronic balance is used for fast	and ac	ccurate weighing	
	(D)	Volumetric flask is used to make	e up a	certain solution to a specific	
	,	volume accurately			
5)	Mobil	le phase can be			
		Gas or liquid			
	(B) S	Solid or liquid			

(C) Only solid(D) Only gas

6)							
	(A)	Paper chromatography is usually considered to be qualitative only, while					
		gas chromatography can be qualita					
	(B)	Paper chromatography and gas chr	omato	ography are both routinely used			
		for quantitative analysis only					
	(C)						
		gas chromatography can be qualita					
	(D)	Paper chromatography and gas chr	omate	ography are both routinely used			
		for qualitative analysis only					
7)	Seri	es that lie in infrared region of electr	omag	enetic spectrum is			
',		Lyman series		Ballmer series			
	,	Bracket series		Both (A) and (B)			
	(0)	Bracket series	(_)				
8)	Whi	ch of the following is the most suita	ble ga	as to use as a carrier gas in a gas			
	chro	omatogram?					
	(A)	Methane	(B)	Carbon dioxide			
	(C)	Oxygen	(D)	Helium			
0)		1 D C 1: 11Cl	1 (IIDI C) segment he wood to			
9)		h Performance Liquid Chromatogra		HPLC) calmot be used to			
	(A)	이 사용하게 주민들이 얼마나 아니는		C - 4 4			
	(B)	Identify the various pigments from					
		Determine the caffeine content of					
	(D)	Determine the mercury content of	a fish	sample			
10)	Who	en heated, metal that results in chan	ge of	state to gas is			
10,	(A)		(B)				
	(C)		(D)	P			
	(0)	5.	(2)				
11)	The	hybridization of orbitals of N	atom	in NO ₃ -, NO ₂ + and NH ₄ + are			
	resp	pectively					
	(A)	sp ² , sp ³ , sp	(B)	sp, sp^2, sp^3			
		sp ² , sp, sp ³	(D)	sp, sp ³ , sp ²			
12)	The	structure of IF ₇ is					
		Pentagonal bipyramid					
		Square pyramid					
		Trigonal bipyramid					
		Octahedral					
				(D.T.O.)			
M-3	3671	[3]		(P.T.O.)			

13)	para	ich one of the following sets com amagnetic property of the ion?	rectly	represents the increase in the	
	(A)	$Cu^{2+} < V^{2+} < Cr^{2+} < Mn^{2+}$	(B)	$Cu^{2+} < Cr^{2+} < V^{2+} < Mn^{2+}$	
	(C)	$Mn^{2+} < V^{2+} < Cr^{2+} < Cu^{2+}$	(D)	$Mn^{2+} < Cu^{2+} < Cr^{2+} < V^{2+}$	
14)	Which one of the following exists in the oxidation state other than +3?				
	(A)		(B)		
	(C)	Ce	(D)	Ga	
15)	The	spin only magnetic moment value (in Bol	or magneton units) of Cr(CO) ₆ is	
	(A)			2.84	
	(C)	4.90	(D)	5.92	
16)	Wha	at is the oxidation state of Iron in Fe	erroce	ene?	
	(A)	+4	(B)	+2	
	(C)	+1	(D)	+3	
17)		ich of the following pictures best rep	resen	ts the polarity of organometallic	
		RM	(B)	R+ M-	
		R-M ⁺		$R^+ M^+$	
18)	The	shape of X_eF_6 is			
		Octahedral			
	(B)	Pentagonal bipyramidcal			
	(C)	Stereochemically nonrigid			
	(D)	F- bridged square pyramidal			
10)	The	comport set of high cited accountial of			
19)		correct set of biological essential e	iemen	us is,	
	(A)	Fe, Mo, Cu, Zn			
	(B)	Fe, Cu, Co, Ru			
	(C)	Cu Mn Zn Ao			

(D) Fe, Ru, Zn, Mg

20) Name of the compound given below is

- (A) 3-methyl-4-ethyloctane
- (B) 2,3-diethylheptane
- (C) 5-ethyl-6-methyloctane
- (D) 4-ethyl-3-methyloctane

21) The number of possible alcoholic isomers for $C_4H_{10}O$ are

(A) 4

(B) 3

(C) 2

(D) 5

22) The reactive intermediate involved in the following reaction

(A) Carbocation

(B) Carbanion

(C) Free radical

(D) An Aryne

23) Predict the product

- 24) Which of the following statement is correct
 - (A) Pyrrole is strong base
 - (B) Pyridine is isoelectric with benzene
 - (C) Pyrrole has less aromatic character than furan
 - (D) Pyridine is a tertiary amine
- 25) Oxidizing agents does not include
 - (A) Potassium iodide

- (B) Potassium permanganate
- (C) Potassium dichromate
- (D) Bromine solution
- 26) Give the name of the rearrangement reaction for given reaction

$$\begin{array}{c|c} & \text{OH} & \\ \hline & \text{CHO} & \\ \end{array} \begin{array}{c} & \text{OH} & \\ & \text{OH} & \\ \end{array}$$

- (A) Baeyer-villiger reaction
- (B) Arndt-Eistert synthesis

(C) Dakin reaction

- (D) Hoffman reaction
- 27) Which is the suitable reagent used for the below reaction

(A) LiAlH₄

(B) Zn-Hg

(C) NaBH₄

- (D) None of these
- 28) Name the reaction that converts ketones/aldehydes into hydrocarbons
 - 1. Clemenson's reduction 2.
- Wolf kishner reduction
- (A) Both 1 and 2 are correct
- (B) Only 1 is correct

(C) Only 2 is correct

(D) None of these

29)	Robinson annulation is a combination of and followed b reactions.					
	(A)	(A) Cannizaro's reaction, aldol condensation				
	(B)					
	,	Michael addition and perkins conde				
		Aldol condensation and perkin's co				
	` '					
30)	Gan	nma rays are				
		High energy electrons				
		Low energy electrons				
		High energy electromagnetic waves	3			
		High energy positrons				
		8 83 1				
31)	Loss	s of an α - particle is equivalent to				
		Loss of two neutrons				
		Loss of two protons				
		Loss of two neutrons and loss of t	wo p	rotons		
		None of the above				
32)	Tetr	agonal system is characterised by				
	(A)	Plane of symmetry	(B)	Axis of symmetry		
	(C)	Centre of symmetry	(D)	All the above		
33)	Which of the following have non crystalline structure?					
	(A)	Iron	(B)	Quartz		
	(C)	Silica glass	(D)	Tungsten		
34)	Energy is absorbed by body in the form of					
	(A)	Photons	(B)	Quantas		
	(C)	Waves	(D)	Energy		
35)		salt bridge is removed between the t		그래의 가능한 얼마나 되었다. 그리고 있는 생각이 되었다. 구속에서 그 네가 있다고		
	(A)	Drops to zero		Does not change		
	(C)	Increases gradually	(D)	Increases rapidly		
36)		nger the oxidizing agent, greater is t		0.11		
		Reduction potential	(B)	Oxidation potential		
	(C)	Ionic behaviour	(D)	None of the above		

		10 1000/ 1 0		
37)		d for 100% completion of		order reaction is
	(A) a/2k		ak	
	(C) 2k/a	(D	a/k	
38)	The enthalpy of f for the melting of		l/mol	. The molar entropy change
	(A) 5.260 cal/(m		0.5	26 cal/(mol K)
	(C) 10.52 cal/(m)			04 cal/(mol K)
	(C) 10.32 cal/(III	(D	21.	o v can (morre)
39)	Which polymer o	occurs naturally		
	(A) Starch and r	nylon (B	Sta	rch and cellulose
	(C) Proteins and	l nylon (D	Pro	oteins and PVC
40)	What is the deg	reneracy of the rotationa	enei	rgy level with $J = 4$ for a
	heteronuclear dia			
	(A) 1		2	
	(C) 4		9	
41)		owing statements is wrong		
	(A) UV absorption is attributable to electronic transitions			
	(B) UV spectra	provide information about	valer	ace electrons
	(B) UV spectra(C) IR absorption	provide information about on is attributable to transition	valer	
	(B) UV spectra(C) IR absorptionof whole more	provide information about on is attributable to transition blecules	valer s bet	nce electrons ween rotational energy levels
	(B) UV spectra(C) IR absorptionof whole more	provide information about on is attributable to transition	valer s bet	nce electrons ween rotational energy levels
42)	(B) UV spectra (C) IR absorption of whole mode (D) NMR spectra	provide information about on is attributable to transition blecules rometers use radiofrequen	valer s bet y ele	nce electrons ween rotational energy levels ctromagnetic radiation
42)	(B) UV spectra(C) IR absorption of whole monomial(D) NMR spectraWhich of the formal	provide information about on is attributable to transition olecules rometers use radiofrequen- llowing techniques would	valer s beto y elected be r	nce electrons ween rotational energy levels ctromagnetic radiation most useful to identify and
42)	(B) UV spectra(C) IR absorption of whole monomial(D) NMR spectraWhich of the formal	provide information about on is attributable to transition olecules rometers use radiofrequent llowing techniques would ence of a known impurity	valer s beto y elected be r	nce electrons ween rotational energy levels ctromagnetic radiation most useful to identify and rug substance
42)	(B) UV spectra(C) IR absorption of whole monotonic(D) NMR spectraWhich of the forquantify the present	provide information about on is attributable to transition olecules rometers use radiofrequent llowing techniques would ence of a known impurity	valer s between the second sec	nce electrons ween rotational energy levels ctromagnetic radiation most useful to identify and rug substance
42)	(B) UV spectra(C) IR absorption of whole moderate(D) NMR spectraWhich of the formula quantify the presentation(A) NMR	provide information about on is attributable to transition olecules rometers use radiofrequent llowing techniques would ence of a known impurity (B	valer s between the second sec	nce electrons ween rotational energy levels ctromagnetic radiation most useful to identify and rug substance ass
	 (B) UV spectra (C) IR absorption of whole moderate (D) NMR spectra (D) Which of the formulatify the presentation of the presentati	provide information about in is attributable to transition oblecules rometers use radiofrequent llowing techniques would ence of a known impurity (B) (C) (C)	valer s between the second of	ace electrons ween rotational energy levels ctromagnetic radiation most useful to identify and rug substance ass PLC e number of the stretching
	(B) UV spectra (C) IR absorption of whole mode of whole mode (D) NMR spectra Which of the formula quantify the present (A) NMR (C) IR Which is the convibrations of (1) (1)	provide information about in is attributable to transition oblecules rometers use radiofrequent llowing techniques would ence of a known impurity (B) (C) (C)	valer s between the second of	nce electrons ween rotational energy levels ctromagnetic radiation most useful to identify and rug substance ass PLC
	 (B) UV spectra (C) IR absorption of whole mode of whole mode (D) NMR spectra (D) NMR spectra (D) Which of the foliopantify the present (A) NMR (C) IR (C) IR (D) Which is the convibrations of (1) of (C) is a C (alkyne)? 	provide information about in is attributable to transition of objecules rometers use radiofrequent llowing techniques would ence of a known impurity (B) (C) (C) (C) (C) (C) (C) (C)	y electors be represented by the representation of the representat	nce electrons ween rotational energy levels ctromagnetic radiation most useful to identify and rug substance ass PLC e number of the stretching (3) C = O (ketone), and (4)
	 (B) UV spectra (C) IR absorption of whole mode of whole mode of whole mode. (D) NMR spectra (D) Which of the folial organities of the present of the	provide information about in is attributable to transition of olecules rometers use radiofrequent llowing techniques would ence of a known impurity (B) (C) (C) (C) (C) (C) (C) (C)	valer s between the second of	acce electrons ween rotational energy levels ctromagnetic radiation most useful to identify and rug substance ass PLC e number of the stretching (3) C = O (ketone), and (4) < (4) < (2) < (1)
	 (B) UV spectra (C) IR absorption of whole mode of whole mode (D) NMR spectra (D) NMR spectra (D) Which of the foliopantify the present (A) NMR (C) IR (C) IR (D) Which is the convibrations of (1) of (C) is a C (alkyne)? 	provide information about in is attributable to transition of olecules rometers use radiofrequent llowing techniques would ence of a known impurity (B) (C) (C) (C) (C) (C) (C) (C)	valer s between the second of	nce electrons ween rotational energy levels ctromagnetic radiation most useful to identify and rug substance ass PLC e number of the stretching (3) C = O (ketone), and (4)
43)	 (B) UV spectra (C) IR absorption of whole monotonic of whole monotonic (D) NMR spectra Which of the formula quantify the present (A) NMR (C) IR Which is the convibrations of (1) of C = C (alkyne)? (A) (4) < (3) < (4) (C) (3) < (4) < (4) 	provide information about on is attributable to transition oblecules rometers use radiofrequent llowing techniques would ence of a known impurity (B) (C) (C) (C) (C) (C) (C) (C)	valer s between be r n a dr n HP wave ohol),	ace electrons ween rotational energy levels actromagnetic radiation most useful to identify and rug substance ass PLC e number of the stretching (3) C = O (ketone), and (4) (4) < (2) < (1) (3) < (3) < (1) < (2)
43)	 (B) UV spectra (C) IR absorption of whole mode of whole mode of whole mode of the following of the followi	provide information about on is attributable to transition of the cules rometers use radiofrequent llowing techniques would ence of a known impurity (B) (C) (C) (C) (C) (C) (C) (C)	valer s between the second of	acce electrons ween rotational energy levels ctromagnetic radiation most useful to identify and rug substance ass PLC e number of the stretching (3) C = O (ketone), and (4) < (4) < (2) < (1)
43)	 (B) UV spectra (C) IR absorption of whole monotonic of whole monotonic (D) NMR spectra Which of the formula quantify the present (A) NMR (C) IR Which is the convibrations of (1) of C = C (alkyne)? (A) (4) < (3) < (4) (C) (3) < (4) < (4) 	provide information about in is attributable to transition oblecules rometers use radiofrequent llowing techniques would ence of a known impurity (B) (C) (C) (C) (C) (C) (C) (C)	valer s between the second of	ace electrons ween rotational energy levels actromagnetic radiation most useful to identify and rug substance ass PLC e number of the stretching (3) C = O (ketone), and (4) (4) < (2) < (1) (3) < (3) < (1) < (2)

[8]

M-3671

45)	The	different type of energies associated	l with	the molecule are.	
,		Electronic energy		Vibrational energy	
		Rotational energy		All of the above mentioned	
	(0)	Rotational energy	(D)	7 th of the above mentioned	
46)	 Which of the following statements regarding mass spectrometry is wrong? (A) In a normal mass spectrometer, electron impact causes a molecule to lose an electron and become a molecular radical cation which decomposes into fragment cations and radicals (B) Only cations can be detected by a normal mass spectrometer (C) A compound whose molecules contain just one bromine atom shows two molecular ion peaks of similar intensity, one at +1 and one at -1 of the average m/z value (D) Molecular ion peaks always have even-numbered values of m/z 				
		in of the State of the Landwice twice in			
47)	In IF	R Spectroscopy which frequency ran 1400-900 cm ⁻¹	ge is	known as the finger print region	
	(B)	600-250 cm ⁻¹			
	,	900-600 cm ⁻¹			
	(D)				
	(-)				
48)	Insti	rument used to collect ions is		gr Roberts I and a second of the second	
	(A)		(B)	Ionizer	
	(C)		(D)	None	
	()				
49)	13C	NMR spectrum of a compound A	conta	ains 2 signals and in the proton	
	NM	R spectrum there is singlet which co	ompo	und is consistent with these data	
		Bromoethane			
	(B)	Dichloromethane			
	(C)	Ethanol			
	(D)	Acetone			
50)		ich of the following compounds cor		s one or more protons that could	
	und	ergo exchange with protons in water	r		
	(A)	CH ₃ OH			
	(B)	CH ₃ Br			
	(C)	$(CH_3)_3N$			
	(D)	$(CH_3)_2O$			

Answer the following questions:

- 1) a) Calculate the electrode potential of a silver electrode immersed in a 0.0500M solution of NaCl using [3]
 - i) $E^{\circ}Ag^{+}/Ag = 0.799V$ and
 - ii) $E^{\circ}AgCl/Ag = 0.222V$. (Given Solubility product constant, $Ksp = 1.82 \times 10^{-10}$).
 - b) With the help of a neat schematics, explain the principle and working of HPLC. [3]
 - c) Draw the Jablonski diagram and explain the different luminescene processes. [4]
- 2) a) With the help of suitable examples, explain oxidative addition and 1,2 insertion in organometallic compounds. [3]
 - b) Differentiate between homogeneous catalysts and heterogeneous catalysts and add a note on anchoring of catalysts. [3]
 - c) Depict the MO diagram for $[FeF_6]^{3-}$ and $Fe[CN]_6^{3-}$ complexes involving both δ and π bonding. Discuss its salient features and comment on its magnetic properties. [4]
- a) Explain the mechanism and application of Michael addition reaction with suitable example. [3]
 - b) Write a brief note on disconnection approach taking retro Diels-Alder reaction as an example. [3]
 - c) Illustrate the reactions for the formation of carbocations? Discuss the factors affecting their stability. [4]

- 4) a) Polyacetylene synthesized contains 5 different molecular weight polymeric chains. The four components of the polymer have 10, 12, 15, 18 and 20 numbers each with 500, 600, 750, 900 and 1000 molecular weight respectively. Calculate the average molecular weight of the polymer. [3]
 - b) Derive Debye-Huckel limiting equation for strong electrolytes and explain its significance.
 - c) What is photosensitization? Discuss the mechanism involved in the dissociation of H, and photochemical decomposition of CH₃CHO. [4]
- 5) a) What symmetry elements are observed in the following molecules? [3]
 - i) trans-1,2-dichloroethene,
 - ii) CH₄ and
 - iii) [PtCl₄]²⁻
 - b) What are fundamental vibrations, overtones and hot bands? Explain.[3]
 - c) An organic compound with molecular formula $C_9H_{10}O_2$ shows the following spectral data: [4]

Mass spectrum, m/z: 150, 135 (base peak)

IR (cm⁻¹): 1680;

¹HNMR (δ ,ppm): 2.3 (3H,s), 3.6(3H,s) and 6.4-7.5 (4H, dd, J = 8Hz).

Deduce the structure of the compound. .

ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಸೂಚನೆಗಳು

- 1. ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಜೊತೆಗೆ 50 ಪ್ರಶ್ನೆಗಳನ್ನು ಹೊಂದಿರುವ ಮೊಹರು ಮಾಡಿದ ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ನಿಮಗೆ ನೀಡಲಾಗಿದೆ.
- 2. ಕೊಟ್ಟಿರುವ ಪ್ರಶ್ನೆ ಮಸ್ತಕವು, ನೀವು ಪರೀಕ್ಷೆಗೆ ಆಯ್ಕೆ ಮಾಡಿಕೊಂಡಿರುವ ವಿಷಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ್ದೇ ಎಂಬುದನ್ನು ಪರಿಶೀಲಿಸಿರಿ.
- 3. ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯ ಮೊಹರನ್ನು ಜಾಗ್ರತೆಯಿಂದ ತೆರೆಯಿರಿ ಮತ್ತು ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯಿಂದ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯನ್ನು ಹೊರಗೆ ತೆಗೆದು, ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಸಾಮಾನ್ಯ ಮಾಹಿತಿಯನ್ನು ತುಂಬಿರಿ. ಕೊಟ್ಟಿರುವ ಸೂಚನೆಯಂತೆ ನೀವು ನಮೂನೆಯಲ್ಲಿನ ವಿವರಗಳನ್ನು ತುಂಬಲು ವಿಫಲರಾದರೆ, ನಿಮ್ಮ ಉತ್ತರ ಹಾಳೆಯ ಮೌಲ್ಯಮಾಪನ ಸಮಯದಲ್ಲಿ ಉಂಟಾಗುವ ಪರಿಣಾಮಗಳಿಗೆ ವೈಯಕ್ತಿಕವಾಗಿ ನೀವೇ ಜವಾಬ್ದಾರರಾಗಿರುತ್ತೀರಿ.
- 4. ಪರೀಕ್ಷೆಯ ಸಮಯದಲ್ಲಿ:
 - a) ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಯನ್ನು ಜಾಗ್ರತೆಯಿಂದ ಓದಿರಿ.
 - b) ಪ್ರತಿ ಪ್ರಶ್ನೆಯ ಕೆಳಗೆ ನೀಡಿರುವ ನಾಲ್ಕು ಲಭ್ಯ ಆಯ್ಕೆಗಳಲ್ಲಿ ಅತ್ಯಂತ ಸರಿಯಾದ/ ಸೂಕ್ತವಾದ ಉತ್ತರವನ್ನು ನಿರ್ಧರಿಸಿ.
 - c) ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆಯ ವೃತ್ತಾಕಾರವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬಿರಿ. ಉದಾಹರಣೆಗೆ, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8ಕ್ಕೆ "C" ಸರಿಯಾದ ಉತ್ತರವಾಗಿದ್ದರೆ, ನೀಲಿ/ಕಪ್ಪು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಬಳಸಿ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಕ್ರಮ ಸಂಖ್ಯೆ 8ರ ಮುಂದೆ ಈ ಕೆಳಗಿನಂತೆ ತುಂಬಿರಿ:
 - ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8.♠ 📵 🔘 (ಉದಾಹರಣೆ ಮಾತ್ರ) (ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಮಾತ್ರ ಉಪಯೋಗಿಸಿ)
- 5. ಉತ್ತರದ ಪೂರ್ವಸಿದ್ದತೆಯ ಬರವಣಿಗೆಯನ್ನು (ಚಿತ್ತು ಕೆಲಸ) ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಒದಗಿಸಿದ ಖಾಲಿ ಜಾಗದಲ್ಲಿ ಮಾತ್ರವೇ ಮಾಡಬೇಕು (ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಮಾಡಬಾರದು).
- 6. ಒಂದು ನಿರ್ದಿಷ್ಟ ಪ್ರಶ್ನೆಗೆ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ವೃತ್ತಾಕಾರವನ್ನು ಗುರುತಿಸಲಾಗಿದ್ದರೆ, ಅಂತಹ ಉತ್ತರವನ್ನು ತಮ್ಮ ಎಂದು ಪರಿಗಣಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಯಾವುದೇ ಅಂಕವನ್ನು ನೀಡಲಾಗುವುದಿಲ್ಲ. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಉದಾಹರಣೆ ನೋಡಿ.
- 7. ಅಭ್ಯರ್ಥಿ ಮತ್ತು ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರು ನಿರ್ದಿಷ್ಟಪಡಿಸಿದ ಸ್ಥಳದಲ್ಲಿ ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯ ಮೇಲೆ ಸಹಿ ಮಾಡಬೇಕು.
- 8. ಅಭ್ಯರ್ಥಿಯು ಪರೀಕ್ಷೆಯ ನಂತರ ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರಿಗೆ ಮೂಲ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆ ಮತ್ತು ವಿಶ್ವವಿದ್ಯಾನಿಲಯದ ಪ್ರತಿಯನ್ನು ಹಿಂದಿರುಗಿಸಬೇಕು.
- 9. ಅಭ್ಯರ್ಥಿಯು ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ಮತ್ತು ಓ.ಎಂ.ಆರ್. ಅಭ್ಯರ್ಥಿಯ ಪ್ರತಿಯನ್ನು ತಮ್ಮ ಜೊತೆ ತೆಗೆದುಕೊಂಡು ಹೋಗಬಹುದು.
- 10. ಕ್ಯಾಲ್ಕುಲೇಟರ್, ಪೇಜರ್ ಮತ್ತು ಮೊಬೈಲ್ ಘೋನ್ಗಳನ್ನು ಪರೀಕ್ಷಾ ಕೊಠಡಿಯ ಒಳಗೆ ಅನುಮತಿಸಲಾಗುವುದಿಲ್ಲ.
- 11. ಅಭ್ಯರ್ಥಿಯು ದುಷ್ಕೃತ್ಯದಲ್ಲಿ ತೊಡಗಿರುವುದು ಕಂಡುಬಂದರೆ, ಅಂತಹ ಅಭ್ಯರ್ಥಿಯನ್ನು ಕೋರ್ಸ್ಗೆ ಪರಿಗಣಿಸಲಾಗುವುದಿಲ್ಲ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಇಂತಹ ಅಭ್ಯರ್ಥಿಯ ವಿರುದ್ಧ ಕ್ರಮ ಕೈಗೊಳ್ಳಲಾಗುವುದು. <u>ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯನ್ನು ತುಂಬಲು ಸೂಚನೆಗಳು</u>
- 1. ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಗೆ ಒಂದೇ ಒಂದು ಅತ್ಯಂತ ಸೂಕ್ತವಾದ/ಸರಿಯಾದ ಉತ್ತರವಿರುತ್ತದೆ.
- 2. ಪ್ರತಿ ಪ್ರಶ್ನೆಗೆ ಒಂದು ವೃತ್ತವನ್ನು ಮಾತ್ರ ನೀಲಿ ಅಥವಾ ಕಪ್ಪು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ನಿನಿಂದ ಮಾತ್ರ ತುಂಬತಕ್ಕದ್ದು. ಉತ್ತರವನ್ನು ಮಾರ್ಪಡಿಸಲು ಪ್ರಯತ್ನಿಸಬೇಡಿ.
- 3. ವೃತ್ತದೊಳಗಿರುವ ಅಕ್ಷರವು ಕಾಣದಿರುವಂತೆ ವೃತ್ತವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬುವುದು.
- 4. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿ ಯಾವುದೇ ಅನಾವಶ್ಯಕ ಗುರುತುಗಳನ್ನು ಮಾಡಬೇಡಿ.

Note: English version of the instructions is printed on the front cover of this booklet.

