

UNIVERSITY OF MYSORE

Ph.D. Entrance Examination, Nov. - 2020

SUBJECT CODE :

43

Entrance Reg. No.

QUESTION BOOKLET NO.

504337

QUESTION BOOKLET

(Read carefully the instructions given in the Question Booklet)

SUBJECT:

MATERIAL SCIENCE

MAXIMUM MARKS: 100

MAXIMUM TIME: THREE HOURS

(Including initial 10 minutes for filling O.M.R. Answer sheet)

INSTRUCTIONS TO THE CANDIDATES

- 1. The sealed questions booklet containing 50 questions enclosed with O.M.R. Answer Sheet is given to you.
- 2. Verify whether the given question booklet is of the same subject which you have opted for examination.
- 3. Open the question paper seal carefully and take out the enclosed O.M.R. Answer Sheet outside the question booklet and fill up the general information in the O.M.R. Answer sheet. If you fail to fill up the details in the form of alphabet and signs as instructed, you will be personally responsible for consequences arising during scoring of your Answer Sheet.
- 4. During the examination:
 - a) Read each question carefully.
 - b) Determine the Most appropriate/correct answer from the four available choices given under each question.
 - c) Completely darken the relevant circle against the Question in the O.M.R. Answer Sheet. For example, in the question paper if "C" is correct answer for Question No.8, then darken against Sl. No.8 of O.M.R. Answer Sheet using Blue/Black Ball Point Pen as follows:

Question No. 8. (A) (B) (Only example) (Use Ball Pen only)

- 5. Rough work should be done only on the blank space provided in the Question Booklet. Rough work should not be done on the O.M.R. Answer Sheet.
- 6. <u>If more than one circle is darkened for a given question, such answer is treated as wrong and no mark will be given. See the example in the O.M.R. Sheet.</u>
- 7. The candidate and the Room Supervisor should sign in the O.M.R. Sheet at the specified place.
- 8. Candidate should return the original O.M.R. Answer Sheet and the university copy to the Room Supervisor after the examination.
- 9. Candidate can carry the question booklet and the candidate copy of the O.M.R. Sheet.
- 10. The calculator, pager and mobile phone are not allowed inside the examination hall.
- 11. If a candidate is found committing malpractice, such a candidate shall not be considered for admission to the course and action against such candidate will be taken as per rules.

INSTRUCTIONS TO FILL UP THE O.M.R. SHEET

- 1. There is only one most appropriate/correct answer for each question.
- For each question, only one circle must be darkened with BLUE or BLACK ball point pen only. Do not try to alter it.
- 3. Circle should be darkened completely so that the alphabet inside it is not visible.
- Do not make any stray marks on O.M.R. Sheet.

ಗಮನಿಸಿ : ಸೂಚನೆಗಳ ಕನ್ನಡ ಆವೃತ್ತಿಯು ಈ ಮಸ್ತಕದ ಹಿಂಭಾಗದಲ್ಲಿ ಮುದ್ರಿಸಲ್ಪಟ್ಟಿದೆ.

PART - A

		shall contains 50 multiple choice/Cone mark.)bjecti	we type questions, each question $[50 \times 1 = 50]$
1)	and	temperature of the surface of the su		
	(A)	Zeroth law	(B)	First law
	(C)	Second law	(D)	Third law
2)		stem consists of 1024 atoms and is there is no interatomic energy in the		
	(A)	12.4 kJ	(B)	12.4 J
	(C)	4.12 kJ	(D)	4.12 J
3)	coole	electric current of 3 A flows through the dead by running water and is kept at the decond of the resistance is		
	(A)	0.3 J/deg	(B)	3.0 J/deg
	(C)	No change	(D)	0.03 J/deg
4)	At 0	°K, fluids are assumed to have		
	(A)	Minimum entropy	(B)	Maximum entropy
	(C)	Zero entropy	(D)	Fixed value of entropy
5)	The a	area of the Carnot cycle on a <i>T-S</i> d	liagrar	n represents
	(A)	Heat absorbed from the source		
	(B)	Work done in a cycle		
	(C)	Heat rejected to the sink		
	(D)	Efficiency of the engine		
M-	5238	-2-		

- For a closed packed bcc structure of hard sphere, the lattice constant a is 6) related to the sphere of radius R is
 - (A) $a = \frac{4R}{\sqrt{3}}$

(B) $a = 4R\sqrt{3}$ (D) $a = 2R\sqrt{2}$

(C) $a = 4R\sqrt{2}$

- The intensity of X-rays is determined by 7)
 - (A) Filament current
 - (B) Filament voltage
 - (C) Potential difference between the cathode and anode
 - (D) Size of the cathode
- The packing fraction of fcc structure is 8)
 - (A) 52%

(B) 68%

(C) 92%

(D) None of these

Match list I with list II 9)

	List I		List II
(A)	Simple cubic structure	(p)	Copper
(B)	BCC structure	(q)	Polonium
(C)	FCC structure	(r)	Lithium
(D)	HCP structure	(s)	Zinc

-3-

- A В C D
- (A) q S r p
- (B) r q p S
- (C) q r S p
- (D) q p S r

10)	Whi	ch of the following statement is true?
	(A)	Phonons always interact irrespective of the nature of force between that atoms
	(B)	There is no phonon collision if force between the atoms is harmonic
	(C)	In Unkapp process $\vec{k}_1 + \vec{k}_2 = \vec{k}_3$
	(D)	Thermal expansion coefficients remain finite as $T\rightarrow 0$
11)	Gen	erally solid solutions in alloy systems are

(R) Interctitial

(21)	Substitutional	(D)	micistitiai	
(C)	Substitutional and interstitial	(D)	None of these	

- (A) Tensile strength
 (B) Young's modulus
 (C) Elongation at break (%)
 (D) All the above
- 13) The solar cells are commonly prepared from silicon boules, the most regularly used process for creating the boule is called the *Czochralski method*. In this process
 - (A) A seed crystal of silicon is dipped into melted polycrystalline silicon
 - (B) A seed crystal of silicon is dipped into melted semicrystalline silicon
 - (C) A seed crystal of silicon is dipped into melted polycrystalline material
 - (D) A seed crystal of silicon is dipped into melted polycrystalline compound
- 14) In compared with Optics, photonics is more emphasis on
 - (A) Normal optics

(A) Substitutional

- (B) Guided waves and optoelectronic devices
- (C) Guided waves
- (D) Both normal optics and guided waves

15)	In m	etals, the Fermi energy is the maximu	ım ene	ergy that occupied by an electron
	(A)	At 300°K	(B) A	At 0°K
	(C)	At 350°K	(D) A	At 400°K
16)		odern world, an artificial skin made for the following of anti-aging efforts	rom a	prominent polymer is considered
	(A)	Silicone polymer	(B)	Natural rubber
	(C)	Collagen	(D)	Wool
17)	The	rmal stability of the biopolymers is s	tudie	d using the following instrument
	(A)	X-ray diffractometer	(B)	Universal testing machine
	(C)	Differential scanning calorimetry	(D)	None of the above
				to the majority of
18)		mer nanocomposites are modern m	ateria	als which consists of
		Microparticles in polymer matrix		
	(B)	Polymer in polymer matrix		
	(C)	Nanoparticles in polymer matrix		
	(D)	Both (A) and (C)		
19)		polymers entering in to molten standard	ate w	hen they are heated and harden
	(A)	Thermoplastics	(B)	Plastics
	(C)	New polymers	(D)	All the above
20)		e rubber is brittle at low temperature used only in the temperature range	and s	soft at high temperature, so it can
	(A)	10-60°C	(B)	10-70°C
	(C)	10-80°C	(D)	10-100°C
M-	5238	-5-		P.T.O.

21)	Inp	polypeptides, the plot of φ , ψ angles	s are l	known as
	(A)	Unkalappa map	(B)	Ramappan map
	(C)	Ramachandran map	(D)	None
22	G!			
22)	Cho	ou-Fasman rules related to		
	(A)	Protein folding	(B)	Peptide folding
	(C)	Polypeptide folding	(D)	None
23)	Silk	x from <i>Bombyx mori</i> is a biomaterial		
	(A)	Biocompatible	(B)	Biodegradable
	(C)	both (A) and (B)	(D)	None
24)		w a days quantum dots (QDs) are wid r unique	dely u	sing in biological studies due to
	(A)	Optical properties	(B)	Chemical properties
	(C)	Thermal properties	(D)	Electrical properties
25)		erally, to obtain an optical image one perties	can m	onitor spatial variation of optical
	(A)	Transmission	(B)	Reflection, or fluorescence
	(C)	Only (A)	(D)	Both (A) and (B)
26)	Hyd	rothermal and solvothermal techniq	ues ar	re widely used to
	(A)	Syntheses and growth of convention	nal aı	nd advanced materials
	(B)	Treatment of wastes		
	(C)	Both (A) and (B)		
	(D)	None		

-6-

27)	pro	ring the application of a solvothern ceeds in solvent at a temperature above reaction mixture within a sealed ves	e its r	normal boiling point by containing
	(A)	Solvent's ability to dissolve solids species	and s	speed up reactions between solid
	(B)	Solvent's ability to dissolve solids		
	(C)	Speed up reactions between solid	speci	es
	(D)	None		
28)	Che	mical vapour deposition (CVD) not	inclu	des the following
	(A)	APCVD	(B)	LPCVD
	(C)	PECVD	(D)	MBE
29)	2-di aton	well-known that Graphene is a omensional structure. Its carbon atomic-scale pattern of		
	(A)	Hexagonal	(B)	Octagonal
	(C)	Pentagonal	(D)	Heptagonal
30)	Hyd	rothermal crystal growth is used to	grow	the crystal
	(A)	$AIPO_4$	(B)	GaPO ₄
	(C)	GaAsO ₄	(D)	All the above
31)		rmogravimetric analysis of the sar	nples	are usually carried out in the
	(A)	Oxygen atmosphere	(B)	Nitrogen atmosphere
	(C)	Carbon dioxide atmosphere	(D)	Carbon monoxide atmosphere
32)		AFM principle is based on the canti ample; this assembly is also commo		
	(A)	Probe	(B)	Substrate
	(C)	Control unit	(D)	Monitoring unit

-7-

M-5238

P.T.O.

33)	The dielectric loss tangent ($tan\delta$), signifies the					
	(A)	Dielectric gain of the sample				
	(B)	Dielectric loss of the sample				
	(C)	Both (A) and (B)				
	(D)	None of the above				
34)		h-resolution transmission electron m tudy	icros	copy (HR-TEM) is mainly used		
	(A)	Normal particles	(B)	Microparticles		
	(C)	Big particles	(D)	Nanoparticles		
35)	Mon	rphology of the polymer blends are n	orma	lly studied using		
	(A)	UV-Visible spectroscopy	(B)	DSC		
	(C)	SEM	(D)	TEM		
36)	Нус	lrodynamic size of the nanoparticles	are d	etermined using		
	(A)	TEM	(B)	HR-TEM		
	(C)	HR-SEM	(D)	DLS		
37)	The	band gap energy of quantum dots is	inve	rsely proportional to		
	(A)	Range	(B)	Radius		
	(C)	Shape	(D)	None		
38)	pol	e process/technique includes fabrication (PDMS) and the geometries defined by the mold's re-	e use	of that mold to create features		
	(A)	Soft lithography	(B)	Lithography		
	(C)	Hard lithography	(D)	Nanofabrication		

39)	In 1857, the famous scientist was fascinated by the ruby colour of the colloida gold and he was discovered the optical properties of the gold colloids diffe from those of the corresponding bulk metal			
	(A)	Heinrich Rohrer	(B)	Michael Faraday
	(C)	Richard Feynman	(D)	None
40)	Usir	ing the Mie theory relation $\lambda_{\text{max}}^2 = \frac{(2^4)^2}{2^4}$	$\frac{\pi c)^2 n}{4}$	$\frac{n_e(\varepsilon_0 + 2n_0^2)}{\pi^2 N_e}$ one can calculate
	(A)	Density of the free electrons in the	metal	nanoparticles
	(B)	Size of the metal nanoparticles		
	(C)	Shape of metal nanoparticles		
	(D)	None		
41)	surfa	anotechnology, the self-assembled races are one of the most popular most assembly of		그 마다 가는 사람이 되는 것이 되었다면 하는데 하는데 이번 사람들이 되었다면 하는데 하는데 하다 하는데
	(A)	Organic molecules on metal surfac	es	
	(B)	In-organic molecules on metal surf	aces	
	(C)	Molecules on metal surfaces		
	(D)	None		
42)		rofluidics is the technology of fluid n	nanip	ulation in channels with
	(A)	Micrometers	(B)	Decameters
	(C)	Millimeters	(D)	Nanometers
43)	The	potential applications of QDs includ	de	
	(A)	Single-electron transistors	(B)	Solar cells
	(C)	LEDs	(D)	All the above
M- 5	238	-9-		P.T.O.

For mono-dispersed gold nanoparticles (~30nm), the surface plasmon resonance phenomenon causes an absorption of light in the portion of the spectrum						
			~400 nm			
		(D)	~650 nm			
Plasi	Plasmonic nanoparticles are metal nanoparticles, this includes					
(A)	Gold	(B)	Silver			
(C)	Platinum	(D)	All the above			
Cond	centrated solar power (CSP)	technologies	s utilises			
(A)	Focused sunlight	(B)	Diffused sunlight			
(C)	Both (A) and (B)	(D)	None of the above			
The	primary components of fuel	cell are				
(A)	Electrolyte	(B)	Cathode			
(C)	Anode	(D)	All the above			
Galv	vanic corrosion refers to					
(A)	(A) Degradation of one metal near a joint					
(B) Degradation of one metal near a point						
(C) Degradation of one metal near at the top						
(D)	None					
Corr	rosion resistant metal					
(A)	Aluminum	(B)	Stainless steel			
(C)	Iron	(D)	Both (A) and (B)			
bioc	orrosion or microbially influ					
(A)	Metals	(B)	Metalloids			
(C)	Minerals	(D)	All the above			
	phen (A) (C) Plass (A) (C) Conc (A) (C) The (A) (C) Galv (A) (B) (C) (D) Corr (A) (C) Microbioc proce (A)	phenomenon causes an absorption (A) ~450 nm (C) ~550 nm Plasmonic nanoparticles are metal (A) Gold (C) Platinum Concentrated solar power (CSP) (A) Focused sunlight (C) Both (A) and (B) The primary components of fuel (A) Electrolyte (C) Anode Galvanic corrosion refers to (A) Degradation of one metal ne (B) Degradation of one metal ne (C) Degradation of one metal ne (D) None Corrosion resistant metal (A) Aluminum (C) Iron Microbial corrosion is generally biocorrosion or microbially influences mostly acts on (A) Metals	phenomenon causes an absorption of light in (A) ~450 nm (B) (C) ~550 nm (D) Plasmonic nanoparticles are metal nanoparticles (A) Gold (B) (C) Platinum (D) Concentrated solar power (CSP) technologies (A) Focused sunlight (B) (C) Both (A) and (B) (D) The primary components of fuel cell are (A) Electrolyte (B) (C) Anode (D) Galvanic corrosion refers to (A) Degradation of one metal near a joint (B) Degradation of one metal near a point (C) Degradation of one metal near at the top (D) None Corrosion resistant metal (A) Aluminum (B) (C) Iron (D) Microbial corrosion is generally a biodeterior biocorrosion or microbially influenced corrosprocess mostly acts on (A) Metals (B)			

-10-

PART - B

This	s part	shall contains five questions, each question carrying ten marks. $[5 \times 10 = 50]$
1		
1.	a)	Discuss the principles of X-ray powder diffraction method. [5]
	b)	Intensity peaks were measured at $2\theta = 20^{\circ}$, 29° , 36.5° , 43.4° , 50.2° 50.35° , and 65.55° for a cubic powdered metal bombarded with Caradiation of $\lambda = 1.54$ Å. Determine the crystal structure and the lattice parameters of the metal.
2.	a)	Enumerate the factors that influence the properties of the polyme composites. [5]
	b)	Write a note on elastomeric composites. [5
3.	a)	Discuss the preparation of semiconductor single crystals. [5
	b)	Write a note sol-gel technique. [5
4.	Exp	lain the construction and working principle of atomic force microscope. [10]
5.	a)	What are ceramic materials? Classify the ceramic materials and give their structures. [5]
	b)	Discuss the mechanism of oxidation. Explain oxidation resistant materials [5]

ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಸೂಚನೆಗಳು

- 1. ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಜೊತೆಗೆ 50 ಪ್ರಶ್ನೆಗಳನ್ನು ಹೊಂದಿರುವ ಮೊಹರು ಮಾಡಿದ ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ನಿಮಗೆ ನೀಡಲಾಗಿದೆ.
- 2. ಕೊಟ್ಟಿರುವ ಪ್ರಶ್ನೆ ಮಸ್ತಕವು, ನೀವು ಪರೀಕ್ಷೆಗೆ ಆಯ್ಕೆ ಮಾಡಿಕೊಂಡಿರುವ ವಿಷಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ್ದೇ ಎಂಬುದನ್ನು ಪರಿಶೀಲಿಸಿರಿ.
- 3. ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯ ಮೊಹರನ್ನು ಜಾಗ್ರತೆಯಿಂದ ತೆರೆಯಿರಿ ಮತ್ತು ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯಿಂದ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯನ್ನು ಹೊರಗೆ ತೆಗೆದು, ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಸಾಮಾನ್ಯ ಮಾಹಿತಿಯನ್ನು ತುಂಬಿರಿ. ಕೊಟ್ಟರುವ ಸೂಚನೆಯಂತೆ ನೀವು ನಮೂನೆಯಲ್ಲಿನ ವಿವರಗಳನ್ನು ತುಂಬಲು ವಿಫಲರಾದರೆ, ನಿಮ್ಮ ಉತ್ತರ ಹಾಳೆಯ ಮೌಲ್ಯಮಾಪನ ಸಮಯದಲ್ಲಿ ಉಂಟಾಗುವ ಪರಿಣಾಮಗಳಿಗೆ ವೈಯಕ್ತಿಕವಾಗಿ ನೀವೇ ಜವಾಬ್ದಾರರಾಗಿರುತ್ತೀರಿ.
- 4. ಪರೀಕ್ಷೆಯ ಸಮಯದಲ್ಲಿ:
 - a) ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಯನ್ನು ಜಾಗ್ರತೆಯಿಂದ ಓದಿರಿ.
 - b) ಪ್ರತಿ ಪ್ರಶ್ನೆಯ ಕೆಳಗೆ ನೀಡಿರುವ ನಾಲ್ಕು ಲಭ್ಯ ಆಯ್ಕೆಗಳಲ್ಲಿ ಅತ್ಯಂತ ಸರಿಯಾದ/ ಸೂಕ್ತವಾದ ಉತ್ತರವನ್ನು ನಿರ್ಧರಿಸಿ.
 - c) ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆಯ ವೃತ್ತಾಕಾರವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬಿರಿ. ಉದಾಹರಣೆಗೆ, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8ಕ್ಕೆ "C" ಸರಿಯಾದ ಉತ್ತರವಾಗಿದ್ದರೆ, ನೀಲಿ/ಕಷ್ಟು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಬಳಸಿ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಕ್ರಮ ಸಂಖ್ಯೆ 8ರ ಮುಂದೆ ಈ ಕೆಳಗಿನಂತೆ ತುಂಬಿರಿ:
 - ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8.🖎 🕲 🌑 🔘 (ಉದಾಹರಣೆ ಮಾತ್ರ) (ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಮಾತ್ರ ಉಪಯೋಗಿಸಿ)
- 5. ಉತ್ತರದ ಪೂರ್ವಸಿದ್ದತೆಯ ಬರವಣಿಗೆಯನ್ನು (ಚಿತ್ತು ಕೆಲಸ) ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಒದಗಿಸಿದ ಖಾಲಿ ಜಾಗದಲ್ಲಿ ಮಾತ್ರವೇ ಮಾಡಬೇಕು (ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಮಾಡಬಾರದು).
- 6. <u>ಒಂದು ನಿರ್ದಿಷ್ಟ ಪ್ರಶ್ನೆಗೆ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ವೃತ್ತಾಕಾರವನ್ನು ಗುರುತಿಸಲಾಗಿದ್ದರೆ, ಅಂತಹ ಉತ್ತರವನ್ನು</u> ತಮ್ಮ ಎಂದು ಪರಿಗಣಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಯಾವುದೇ ಅಂಕವನ್ನು ನೀಡಲಾಗುವುದಿಲ್ಲ. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಉದಾಹರಣೆ ನೋಡಿ.
- 7. ಅಭ್ಯರ್ಥಿ ಮತ್ತು ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರು ನಿರ್ದಿಷ್ಟಪಡಿಸಿದ ಸ್ಥಳದಲ್ಲಿ ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯ ಮೇಲೆ ಸಹಿ ಮಾಡಬೇಕು.
- 8. ಅಭ್ಯರ್ಥಿಯು ಪರೀಕ್ಷೆಯ ನಂತರ ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರಿಗೆ ಮೂಲ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆ ಮತ್ತು ವಿಶ್ವವಿದ್ಯಾನಿಲಯದ ಪ್ರತಿಯನ್ನು ಹಿಂದಿರುಗಿಸಬೇಕು.
- 9. ಅಭ್ಯರ್ಥಿಯು ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ಮತ್ತು ಓ.ಎಂ.ಆರ್. ಅಭ್ಯರ್ಥಿಯ ಪ್ರತಿಯನ್ನು ತಮ್ಮ ಜೊತೆ ತೆಗೆದುಕೊಂಡು ಹೋಗಬಹುದು.
- 10. ಕ್ಯಾಲ್ಕುಲೇಟರ್, ಪೇಜರ್ ಮತ್ತು ಮೊಬೈಲ್ ಘೋನ್'ಗಳನ್ನು ಪರೀಕ್ಷಾ ಕೊಠಡಿಯ ಒಳಗೆ ಅನುಮತಿಸಲಾಗುವುದಿಲ್ಲ.
- 11. ಅಭ್ಯರ್ಥಿಯು ದುಷ್ಕೃತ್ಯದಲ್ಲಿ ತೊಡಗಿರುವುದು ಕಂಡುಬಂದರೆ, ಅಂತಹ ಅಭ್ಯರ್ಥಿಯನ್ನು ಕೋರ್ಸ್ಗೆ ಪರಿಗಣಿಸಲಾಗುವುದಿಲ್ಲ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಇಂತಹ ಅಭ್ಯರ್ಥಿಯ ವಿರುದ್ಧ ಕ್ರಮ ಕೈಗೊಳ್ಳಲಾಗುವುದು. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯನ್ನು ತುಂಬಲು ಸೂಚನೆಗಳು
- 1. ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಗೆ ಒಂದೇ ಒಂದು ಅತ್ಯಂತ ಸೂಕ್ತವಾದ/ಸರಿಯಾದ ಉತ್ತರವಿರುತ್ತದೆ.
- 2. ಪ್ರತಿ ಪ್ರಶ್ನೆಗೆ ಒಂದು ವೃತ್ತವನ್ನು ಮಾತ್ರ ನೀಲಿ ಅಥವಾ ಕಪ್ಪು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ನಿನಿಂದ ಮಾತ್ರ ತುಂಬತಕ್ಕದ್ದು. ಉತ್ತರವನ್ನು ಮಾರ್ಪಡಿಸಲು ಪ್ರಯತ್ನಿಸಬೇಡಿ.
- 3. ವೃತ್ತದೊಳಗಿರುವ ಅಕ್ಷರವು ಕಾಣದಿರುವಂತೆ ವೃತ್ತವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬುವುದು.
- 4. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿ ಯಾವುದೇ ಅನಾವಶ್ಯಕ ಗುರುತುಗಳನ್ನು ಮಾಡಬೇಡಿ.

Note: English version of the instructions is printed on the front cover of this booklet.

