

UNIVERSITY OF MYSORE

Ph.D. Entrance Examination, November - 2020

SUBJECT CODE :

12

Entrance Reg. No.

QUESTION BOOKLET NO.

501541

QUESTION BOOKLET

(Read carefully the instructions given in the Question Booklet)

SUBJECT:

CHEMISTRY

MAXIMUM MARKS: 100

MAXIMUM TIME: THREE HOURS

(Including initial 10 minutes for filling O.M.R. Answer sheet)

INSTRUCTIONS TO THE CANDIDATES

- 1. The sealed questions booklet containing 50 questions enclosed with O.M.R. Answer Sheet is given to you.
- 2. Verify whether the given question booklet is of the same subject which you have opted for examination.
- Open the question paper seal carefully and take out the enclosed O.M.R. Answer Sheet outside the question booklet and fill up the general information in the O.M.R. Answer sheet. If you fail to fill up the details in the form of alphabet and signs as instructed, you will be personally responsible for consequences arising during scoring of your Answer Sheet.
- 4. During the examination:
 - a) Read each question carefully.
 - b) Determine the Most appropriate/correct answer from the four available choices given under each question.
 - c) Completely darken the relevant circle against the Question in the O.M.R. Answer Sheet. For example, in the question paper if "C" is correct answer for Question No.8, then darken against Sl. No.8 of O.M.R. Answer Sheet using Blue/Black Ball Point Pen as follows:

Question No. 8. (A) (B) (Only example) (Use Ball Pen only)

- 5. Rough work should be done only on the blank space provided in the Question Booklet. Rough work should not be done on the O.M.R. Answer Sheet.
- 6. <u>If more than one circle is darkened for a given question, such answer is treated as wrong and no mark will be given. See the example in the O.M.R. Sheet.</u>
- 7. The candidate and the Room Supervisor should sign in the O.M.R. Sheet at the specified place.
- 8. Candidate should return the original O.M.R. Answer Sheet and the university copy to the Room Supervisor after the examination.
- 9. Candidate can carry the question booklet and the candidate copy of the O.M.R. Sheet.
- 10. The calculator, pager and mobile phone are not allowed inside the examination hall.
- 11. If a candidate is found committing malpractice, such a candidate shall not be considered for admission to the course and action against such candidate will be taken as per rules.

INSTRUCTIONS TO FILL UP THE O.M.R. SHEET

- 1. There is only one most appropriate/correct answer for each question.
- 2. For each question, only one circle must be darkened with BLUE or BLACK ball point pen only. Do not try to alter it.
- 3. Circle should be darkened completely so that the alphabet inside it is not visible.
- 4. Do not make any stray marks on O.M.R. Sheet.

ಗಮನಿಸಿ : ಸೂಚನೆಗಳ ಕನ್ನಡ ಆವೃತ್ತಿಯು ಈ ಮಸ್ತಕದ ಹಿಂಭಾಗದಲ್ಲಿ ಮುದ್ರಿಸಲ್ಪಟ್ಟಿದೆ.

PART - A

This part shall contains 50 multiple choice/objective type questions, each question carrying one mark. $[50 \times 1 = 50]$

(B) resonance effect

Polarographic behaviour is strongly influenced by

1)

(A) steric effect

	(C)	conjugative effect	(D)	all of these			
2)	Which of the following statements is not true						
	(A) Thermometric titrations can be applied for redox titration						
	(B) Thermometric titrations are performed at constant temperature						
	(C)	(C) Thermometric titrations are based solely on equilibrium constant of the reaction					
	(D)	Dielectric constant of titration	the solvent does	not influence the thermometric			
3)	The acid-base indicator shows a colour change at pH 6.40 when 20% of it is ionised. The dissociation constant of the indicator is						
	(A)	9.95×10^{-8}	(B)	3.95×10^{-6}			
	(C)	4.5×10^{-8}	(D)	6.0×10^{-8}			
	mg.	mustard seeds and obtained the following results: 20.0; 20.4; 20.7 and 18.8 mg. Calculate the Q (rejection test) value for the last suspected result in the set of measurements.					
	(A)	0.5347	(B)	0.6316			
	(C)	0.6023	(D)	0.712			
5)	Which of the following adsorbent used in column adsorption chromatography						
	has maximum adsorptive power?						
		Silica gel	(B)				
	(C)	Aluminium oxide	(D)	Calcium carbonate			
6)	In order to excite the spectra of many metals in flame photometry, which of the following is good oxidant?						
		Oxygen	(B)	Nitrogen			
	(C)	Nitrous oxide	(D)	Hydrogen			
M-	5274		-2-				

7)	Syn	ergic extraction is	(1) (1) 78				
		(A) extraction of metals with two extractants					
	(B)	extraction of aminoacids with two					
	, ,	solvent extraction by using gas mix					
		extraction of drugs with two extraction					
		and of eath summer of the first that					
8)) A 4×10^{-4} M solution of aniline in water has absorbance 0.504 at 280 nm (1.00 cm cell). Then the absorbance of a 1.50×10^{-3} M solution of aniline in water at						
		e wavelength in 0.500 cm cell is					
	(A)	1.14	(B)	11.4			
	(C)	0.114	(D)	0.014			
9)	Fluoresence Quantum efficiency of a molecule depends on						
		Structural rigidity		pH of solution			
	(C)	Temperature and pressure		All of the above			
10)	Cov	ralent radius of nitrogen is 70 ppm	Цет	ace covalent radius of baron is			
-0,	abo		. 1101	ice covalent radius of boton is			
		40 ppm	(B)	50 ppm			
		60 ppm		110 ppm			
	(-)	PP	(2)	110 ppin			
11)	For	Beryllium, Be $Z_{eff} = 1.95$, for Be^{x+} , $Z_{eff} = 1.95$	$Z_{\rm eff} =$	2.30, hence ion is			
	(A)			Be ⁺			
	(C)	Be ²⁺		Be ³⁺			
12)	The	shape of BrF ₃ is					
/		T-shaped	(B)	Trigonal planar			
	State of the same	Trigonal pyramidal	(D)	Trigonal bipyramidal			
	(-) Ingenia opjimmuu						
13)	Whi	ch one of the following molecular h	ydrid	e acts as a Lewis acid?			
	(A)	NH ₃	(B)	H ₂ O			
	(C)	B_2H_6	(D)	CH ₄			
14)	Which of the following species is capable of functioning both as a Bronsted						
	acid and Bronsted base?						
	(A)	S ² -	(B)	CO ₃ ²⁻			
	(C)	F		HS-			

15)	AgCl and NaCl are colourless. NaBr and NaI are also colourless but AgBr and AgI are coloured. This is because				
	(A) Ag ⁺ polarises Br ⁻ and I ⁻	(B)	Ag+ has unpaired d-orbital		
	(C) Ag ⁺ depolarises Br ⁻ and I ⁻		None of the above		
16)) Mercury is the only metal which is liquid at 0°C. This is due to its				
10)	(A) weak metallic bond		high vapour pressure		
	(C) high ionisation energy	, ,	both A and C		
	(C) High formsation chergy	(D)	The state of the s		
17)	Zeise salt is				
	(A) $K^+ [PtCl_3(C_2H_4)]^-$		K_2 [PtCl ₃ - η^2 -C ₃ H ₆]		
	(C) K^+ [PtCl ₃ - η^2 -(C ₂ H ₄)]	(D)	$K^{+}[PtCl_{2}-\eta^{2}-(C_{2}H_{4})]Cl^{-}$		
18)	Jahn-Teller effect the geometry of				
10)	(A) $[Cu(NH_3)_4]^{2+}$	(B)	$[MnCl_4]^{2-}$		
Mod	(C) $[Ni(NH_3)_6]^{2+}$		None of these		
	(C) [141(141 ₃) ₆]	(D)	Trone of these		
19)	The structure of Fe ₃ (CO) ₁₂ shows				
	(A) no bridging and two terminal CO g	group	os de la companya de		
	(B) one bridging and eleven terminal CO groups				
	(C) two bridging and ten terminal CO groups				
	(D) three bridging and nine terminal CO groups				
20)	Ferrodoxins are enzymes which lays im	porta	nt role in		
20)	(A) oxygen transfer	Portu	and the second second second		
	(B) involved in nitrogen fixation				
	(C) reduction of NAD to NADH		special factors		
	(D) all of the above				
	an or the doore		short on the speakers.		
21)	Myoglobin is				
	(A) tetramer	(B)	trimer		
	(C) dimer	(D)	monomer		
22)	The lowest energy Mulliken symbol for	· Cr ³⁺	(0.)is		
)	· · · · · · · · · · · · · · · · · · ·	(B)			
	(A) ${}^{4}A_{2g}$	(D)	프로그램 경기를 가는 이번 말로 그림을 받는 사람들이 되었다.		

23) In the hydroformylation reaction, the intermediate CH₃-CH₂-CH₂-Co(CO)₄

$$H_3C$$
— CH_2 — CH_2 — Co — $(CO)_3$

- (A) forms an acyl intermediate
- (B) forms an adduct with an olefin reactant
- (C) reacts with H,
- (D) eliminates propane

24) The IUPAC name of the compound is

- (A) bicyclo [4, 2, 0] octan -6-ol
- (B) bicyclo [4, 2, 0] octan -3-ol
- (C) bicyclo [2, 2, 2] octan -4-ol
- (D) bicyclo [4, 2, 0] octan -4-ol

25) The staggered Sawhorse projection for

$$(A) \qquad \underset{\text{CI} \qquad \text{CI} \qquad \text{COOH}}{\overset{\text{Ph}}{\longrightarrow}} \qquad \overset{\text{H}}{\longrightarrow} \qquad \qquad$$

26) Reaction of R-2 butanol with p-toluene sulphonyl chloride and pyridine by LiBr gives

(A) R-2- butyl tosylate

(B) S-2-butyl tosylate

(C) R-2-butyl bromide

(D) S-2-butyl bromide

27) Which does not involve a carbocation?

- (A) $(CH_3)_3CC1 + AgNO_3 \rightarrow$
- (B) $(CH_3)_3COH + HCl \rightarrow$
- (C) $(CH_3)_3 CH + Cl_2 + hv \rightarrow$
- (D) $CH_3CH=CHCH_2OH + H_3O^+ \rightarrow$

28) Diels-alder reaction normally yields endo-adduct as major product. This is due to

- (A) higher stability of the product
- (B) faster rate of formation of endo product
- (C) steric hindrance
- (D) secondary orbitals interactions between a diene and a dienophile

29) Identify the structure of A in the below reaction.

(A) HO HO

(D)

30) The product of the following transformation is

(A) OH

(B)

(C) CH₃

(D)

31) Pyrrole reacts with chloroform in presence of base to give pyrrole-2-carboxyaldehyde, This reaction is an example of

- (A) Reimer-Tiemann reaction
- (B) Gomberg reaction
- (C) Houben -Hoesch reaction
- (D) Cannizzaro reaction

32) End product of the following sequence of reaction is

(A)

(B)

(C)

(D)

- 33) Reduction of α,β unsaturated aldehyde to the corresponding α,β unsaturated alcohol is brought about by
 - (A) Aluminium isopropoxide/isopropanol
 - (B) Na-ethanol
 - (C) H₂/Ni
 - (D) Electrolytic reduction

The major product of the above transformation is

(A)
$$(B)$$
 (C) (D) (C) (D) (C) (D) (C) (D)

- 35) An element with mass number 15 and isotopic mass 15.00486 u has mass defect of 0.124043 u. If mass of a proton and a neutron is 1.008145 u and 1.008986 u respectively. Find out the atomic number of the element. (Mass of the electron can be neglected)
 - (A) 6

(B) 8

(C) 7

- (D) 5
- 36) A particle of mass m is confined to a one-dimensional box extending from x = 0 to x = 9. Assuming the particle in the first excited state, what is the position probability density at x = a/8?
 - (A) 1/a

(B) 2/a

(C) 1/2a

(D) 1/4a

(C) (D) The diffi prop (A) (B) (C) (D)	each nanotubes is one large molec both (B) and (C) scattering contribution of one indiraction pattern of a crystal structure of a crystal structure of the atom/ion. Which is the The identity of the element The oxidation state The isotope The position of the atom/ion in the ich one of the following is a chain go nucleic acid protein	ividua depen e prop	ds on all but one of the following perty that has no effect?
(C) (D) The diffi prop (A) (B) (C) (D) Whi	both (B) and (C) scattering contribution of one indiraction pattern of a crystal structure operaties of the atom/ion. Which is the The identity of the element The oxidation state The isotope The position of the atom/ion in the ich one of the following is a chain g	vidua depen e prop	ds on all but one of the following perty that has no effect? cell. polymer?
(C) (D) The diffi prop (A) (B) (C) (D)	both (B) and (C) scattering contribution of one indirection pattern of a crystal structure operties of the atom/ion. Which is the The identity of the element The oxidation state The isotope The position of the atom/ion in the	ividua depen e prop	ds on all but one of the following perty that has no effect?
(C) (D) The diffi prop (A) (B) (C)	both (B) and (C) scattering contribution of one indirection pattern of a crystal structure operaties of the atom/ion. Which is the The identity of the element The oxidation state The isotope	vidua depen e prop	ds on all but one of the following perty that has no effect?
(C) (D)	both (B) and (C)		engan bangangsan 1964
(B)	efficient interlocking of the particle	es	
1) The high tensile strength of nanomaterials is due to(A) the high density of nanotubes			lue to
(A)	230.3 min	(B) (D)	23.03 min 460.6 min
) The half-life period of a first order chemical reaction is 6.93min. The time required for the completion of 99% of the chemical reaction will be (log 2)			
The (A) (C) A zi that the 6 (A)	enthalpy of unit mass for any system $H = U + pV + S$ $H = U + pV$ H	m is (B) (D) of zince f 95% (6V) (B)	
(A)	21%	(B)	22%
	(A) (C) The (A) (C) A zi that the G (A) (C) The requ 0.30 (A) (C) The	(A) 21% (C) 24% The enthalpy of unit mass for any syste (A) H = U + pV + S (C) H = U + pV A zinc rod is placed in 0.1M solution of that the salt is dissociated to the extent of the electrode at 25°C is (E° _{zn²+/Zn} = -0.76 (A) -0.76 V (C) +0.79 V The half-life period of a first order characteristic for the completion of 99% of the completion of 99% of the completion of 99% of the completion of 46.06 min The high tensile strength of nanomaterist (A) the high density of nanotubes	The enthalpy of unit mass for any system is (A) $H = U + pV + S$ (B) (C) $H = U + pV$ (D) A zinc rod is placed in 0.1M solution of zince that the salt is dissociated to the extent of 95% the electrode at 25°C is $(E_{zn}^2 + /Zn} = -0.76V)$ (A) $-0.76 V$ (B) (C) $+0.79 V$ (D) The half-life period of a first order chemical required for the completion of 99% of the chemical of 46.06 min (D) The high tensile strength of nanomaterials is of (A) the high density of nanotubes

44)	[PtCl ₄] ² -belongs to the following point group					
	(A)	O_h	(B)	T_d		
	(C)	D_{4h}	(D)	C _{4v}		
45)	The	molecule which is IR-inactive but I	Rama	n active is		
		N_2		HCl Vielen A. C. V.		
	(C)	SO ₂	(D)	Protein		
46)	Zero	o point energy of diatomic SHO of v	ibrat	ional frequency v is		
	(A)	hv	(B)	½ hv		
	(C)	¼ hv	(D)	2/3 hv		
47)	The ESR spectrum of CD_3 free radical (nuclear spin of $^2D = 1$) consists of					
	(A)	four lines	(B)	1:2:3:2:1 quintet		
	(C)	1:6:15:20:15:6:1 septet	(D)	1:3:6:7:6:3:1 septet		
48)	The	frequency shift of the carbonyl abso	orptio	n in salicylaldehyde is		
		1600 cm ⁻¹		1700 cm ⁻¹		
	(C)	1750 cm ⁻¹	(D)	1666 cm ⁻¹		
49)		compound shows a P-NMR peak in spectrometer operating at 60 MI				
	(A)		(B)			
	(C)	3	(D)	4		
50)	The	$\sigma \rightarrow \sigma^*$ transition wavelength lies in		Section and the control of the contr		
	(A)	IR region	(B)	Visible region		
	(C)	UV region	(D)	None of these		

PART - B

This part shall contains five questions, each question carrying ten marks.

 $[5 \times 10 = 50]$

- 1) a) What are complexometric titrations? Explain the indicator action of Eriochrome Black-T at the endpoint of complexometric titration.
 - b) Discuss the principle and application of electrogravimetry in the determination of copper in a sample.
 - c) With the help of a neat schematics, illustrate the principle and working of HPLC.

[3+4+3]

- 2) a) Draw the molecular orbital diagram of N₂ and explain its characteristics.
 - b) Briefly explain the Born-Haber cycle for the formation of NaC1.
 - c) Describe the mechanism involved in the Wacker process during the formation of aldehyde.

[3+4+3]

- 3) a) Discuss the stereochemistry of $S_N 1$ and $S_N 2$ reactions.
 - b) Explain the importance of Robinson's annulation reaction in the construction of carbocyclic ring systems.
 - c) Bring out the application of Wilkinson's catalyst in organic synthesis.

[4+3+3]

- 4) a) Derive the Schrodinger equation for Hydrogen atom.
 - b) List the properties of ZnO and discuss its application in photochemical kinetics.
 - c) Consider an ideal gas having thermodynamic variables (p, V, T). Let it undergo an adiabatic process from state 1 to state 2. Obtain the adiabatic curves on a p-V diagram and also find the work done.

[3+4+3]

- 5) a) Verify that the characters given in the C_{2v} point group obey the properties of the irreducible representations.
 - b) Elucidate the structure of organic compound with molecular formula C_8H_8O and following spectral data: UV: 250nm: FTIR: 3050, 2850, 1670 cm⁻¹

UV: 250nm; FTIR: 3050, 2850,

NMR: 9.8 (s, 1H); 7.8 (d, 2H); 6.9 (d, 2H); 3.9 (s,3H) MS (m/z): 136, 135, 92, 77, 51, 29.

c) Interpret the NQR spectrum of K₂ [PtCl₆] (for ³⁵C1, I=3/2).

[3+4+3]

ಅಭ್ಯರ್ಥಿಗಳಿಗೆ ಸೂಚನೆಗಳು

- 1. ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಜೊತೆಗೆ 50 ಪ್ರಶ್ನೆಗಳನ್ನು ಹೊಂದಿರುವ ಮೊಹರು ಮಾಡಿದ ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ನಿಮಗೆ ನೀಡಲಾಗಿದೆ.
- 2. ಕೊಟ್ಟಿರುವ ಪ್ರಶ್ನೆ ಮಸ್ತಕವು, ನೀವು ಪರೀಕ್ಷೆಗೆ ಆಯ್ಕೆ ಮಾಡಿಕೊಂಡಿರುವ ವಿಷಯಕ್ಕೆ ಸಂಬಂಧಿಸಿದ್ದೇ ಎಂಬುದನ್ನು ಪರಿಶೀಲಿಸಿರಿ.
- 3. ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯ ಮೊಹರನ್ನು ಜಾಗ್ರತೆಯಿಂದ ತೆರೆಯಿರಿ ಮತ್ತು ಪ್ರಶ್ನೆಪತ್ರಿಕೆಯಿಂದ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯನ್ನು ಹೊರಗೆ ತೆಗೆದು, ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಸಾಮಾನ್ಯ ಮಾಹಿತಿಯನ್ನು ತುಂಬಿರಿ. ಕೊಟ್ಟಿರುವ ಸೂಚನೆಯಂತೆ ನೀವು ನಮೂನೆಯಲ್ಲಿನ ವಿವರಗಳನ್ನು ತುಂಬಲು ವಿಫಲರಾದರೆ, ನಿಮ್ಮ ಉತ್ತರ ಹಾಳೆಯ ಮೌಲ್ಯಮಾಪನ ಸಮಯದಲ್ಲಿ ಉಂಟಾಗುವ ಪರಿಣಾಮಗಳಿಗೆ ವೈಯಕ್ತಿಕವಾಗಿ ನೀವೇ ಜವಾಬ್ದಾರರಾಗಿರುತ್ತೀರಿ.
- 4. ಪರೀಕ್ಷೆಯ ಸಮಯದಲ್ಲಿ:
 - a) ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಯನ್ನು ಜಾಗ್ರತೆಯಿಂದ ಓದಿರಿ.
 - b) ಪ್ರತಿ ಪ್ರಶ್ನೆಯ ಕೆಳಗೆ ನೀಡಿರುವ ನಾಲ್ಕು ಲಭ್ಯ ಆಯ್ಕೆಗಳಲ್ಲಿ ಅತ್ಯಂತ ಸರಿಯಾದ/ ಸೂಕ್ತವಾದ ಉತ್ತರವನ್ನು ನಿರ್ಧರಿಸಿ.
 - c) ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಸಂಬಂಧಿಸಿದ ಪ್ರಶ್ನೆಯ ವೃತ್ತಾಕಾರವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬಿರಿ. ಉದಾಹರಣೆಗೆ, ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8ಕ್ಕೆ "C" ಸರಿಯಾದ ಉತ್ತರವಾಗಿದ್ದರೆ, ನೀಲಿ/ಕಷ್ಟು ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಬಳಸಿ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯ ಕ್ರಮ ಸಂಖ್ಯೆ 8ರ ಮುಂದೆ ಈ ಕೆಳಗಿನಂತೆ ತುಂಬಿರಿ:
- ಪ್ರಶ್ನೆ ಸಂಖ್ಯೆ 8. இ ② (ಉದಾಹರಣೆ ಮಾತ್ರ) (ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ ಮಾತ್ರ ಉಪಯೋಗಿಸಿ)
 5. ಉತ್ತರದ ಪೂರ್ವಸಿದ್ದತೆಯ ಬರವಣಿಗೆಯನ್ನು (ಚಿತ್ತು ಕೆಲಸ) ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ ಒದಗಿಸಿದ ಖಾಲಿ ಜಾಗದಲ್ಲಿ ಮಾತ್ರವೇ ಮಾಡಬೇಕು (ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆಯಲ್ಲಿ ಮಾಡಬಾರದು).
- 6. ಒಂದು ನಿರ್ದಿಷ್ಟ ಪ್ರಶ್ನೆಗೆ ಒಂದಕ್ಕಿಂತ ಹೆಚ್ಚು ವೃತ್ತಾಕಾರವನ್ನು ಗುರುತಿಸಲಾಗಿದ್ದರೆ, ಅಂತಹ ಉತ್ತರವನ್ನು ತಮ್ಮ ಎಂದು ಪರಿಗಣಿಸಲಾಗುತ್ತದೆ ಮತ್ತು ಯಾವುದೇ ಅಂಕವನ್ನು ನೀಡಲಾಗುವುದಿಲ್ಲ. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿನ ಉದಾಹರಣೆ ನೋಡಿ.
- 7. ಅಭ್ಯರ್ಥಿ ಮತ್ತು ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರು ನಿರ್ದಿಷ್ಟಪಡಿಸಿದ ಸ್ಥಳದಲ್ಲಿ ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯ ಮೇಲೆ ಸಹಿ ಮಾಡಬೇಕು.
- 8. ಅಭ್ಯರ್ಥಿಯು ಪರೀಕ್ಷೆಯ ನಂತರ ಕೊಠಡಿ ಮೇಲ್ವಿಚಾರಕರಿಗೆ ಮೂಲ ಓ.ಎಂ.ಆರ್. ಉತ್ತರ ಹಾಳೆ ಮತ್ತು ವಿಶ್ವವಿದ್ಯಾನಿಲಯದ ಪ್ರತಿಯನ್ನು ಹಿಂದಿರುಗಿಸಬೇಕು.
- 9. ಅಭ್ಯರ್ಥಿಯ ಪ್ರಶ್ನೆ ಮಸ್ತಕವನ್ನು ಮತ್ತು ಓ.ಎಂ.ಆರ್. ಅಭ್ಯರ್ಥಿಯ ಪ್ರತಿಯನ್ನು ತಮ್ಮ ಜೊತೆ ತೆಗೆದುಕೊಂಡು ಹೋಗಬಹುದು.
- 10. ಕ್ಯಾಲ್ಕುಲೇಟರ್, ಪೇಜರ್ ಮತ್ತು ಮೊಬೈಲ್ ಘೋನ್'ಗಳನ್ನು ಪರೀಕ್ಷಾ ಕೊಠಡಿಯ ಒಳಗೆ ಅನುಮತಿಸಲಾಗುವುದಿಲ್ಲ.
- 11. ಅಭ್ಯರ್ಥಿಯು ದುಷ್ಕ್ರತ್ಯದಲ್ಲಿ ತೊಡಗಿರುವುದು ಕಂಡುಬಂದರೆ, ಅಂತಹ ಅಭ್ಯರ್ಥಿಯನ್ನು ಕೋರ್ಸ್ಗೆ ಪರಿಗಣಿಸಲಾಗುವುದಿಲ್ಲ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಇಂತಹ ಅಭ್ಯರ್ಥಿಯ ವಿರುದ್ಧ ಕ್ರಮ ಕೈಗೊಳ್ಳಲಾಗುವುದು. <u>ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯನ್ನು ತುಂಬಲು ಸೂಚನೆಗಳು</u>
- 1. ಪ್ರತಿಯೊಂದು ಪ್ರಶ್ನೆಗೆ ಒಂದೇ ಒಂದು ಅತ್ಯಂತ ಸೂಕ್ಷವಾದ/ಸರಿಯಾದ ಉತ್ತರವಿರುತದೆ.
- 2. ಪ್ರತಿ ಪ್ರಶ್ನೆಗೆ ಒಂದು ವೃತ್ತವನ್ನು ಮಾತ್ರ ನೀಲಿ ಅಥವಾ ಕಮ್ಮ ಬಾಲ್ ಪಾಯಿಂಟ್ ಪೆನ್ನಿನಿಂದ ಮಾತ್ರ ತುಂಬತಕ್ಕದ್ದು. ಉತ್ತರವನ್ನು ಮಾರ್ಪಡಿಸಲು ಪ್ರಯತ್ನಿಸಬೇಡಿ.
- 3. ವೃತ್ತದೊಳಗಿರುವ ಅಕ್ಷರವು ಕಾಣದಿರುವಂತೆ ವೃತ್ತವನ್ನು ಸಂಪೂರ್ಣವಾಗಿ ತುಂಬುವುದು.
- 4. ಓ.ಎಂ.ಆರ್. ಹಾಳೆಯಲ್ಲಿ ಯಾವುದೇ ಅನಾವಶ್ಯಕ ಗುರುತುಗಳನ್ನು ಮಾಡಬೇಡಿ.

Note: English version of the instructions is printed on the front cover of this booklet.

